28 research outputs found

    Application of China-Brazil Earth resources satellite in China

    Get PDF
    The launch and successful operation of Chinese Brazil Earth resources satellite (CBERS-1) in China has accelerated the application of space technology in China. These applications include agriculture, forestry, water conservation. land resources, city planning, environment protection and natural hazards monitoring and so oil. The result of these applications provides a scientific basis for government decision making and has created great economic and social benefits in Chinese national economy construction. In this paper we present examples and provide auxiliary documentation of additional applications of the data from Earth resource monitoring, (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved

    Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol

    Get PDF
    Oxygenated organic molecules (OOMs) are crucial for atmospheric new particle formation and secondary organic aerosol (SOA) growth. Therefore, understanding their chemical composition, temporal behavior, and sources is of great importance. Previous studies on OOMs mainly focus on environments where biogenic sources are predominant, yet studies on sites with dominant anthropogenic emissions, such as megacities, have been lacking. Here, we conducted long-term measurements of OOMs, covering four seasons of the year 2019, in urban Beijing. The OOM concentration was found to be the highest in summer (1.6 x 10(8) cm(-3)), followed by autumn (7.9 x 10(7) cm(-3)), spring (5.7 x 10(7) cm(-3)) and winter (2.3 x 10(7) cm(-3)), suggesting that enhanced photo-oxidation together with the rise in temperature promote the formation of OOMs. Most OOMs contained 5 to 10 carbon atoms and 3 to 7 effective oxygen atoms (nO(eff) = nO - 2 x nN). The average nO(eff )increased with increasing atmospheric photo-oxidation capacity, which was the highest in summer and the lowest in winter and autumn. By performing a newly developed workflow, OOMs were classified into the following four types: aromatic OOMs, aliphatic OOMs, isoprene OOMs, and monoterpene OOMs. Among them, aromatic OOMs (29 %-41 %) and aliphatic OOMs (26 %-41 %) were the main contributors in all seasons, indicating that OOMs in Beijing were dominated by anthropogenic sources. The contribution of isoprene OOMs increased significantly in summer (33 %), which is much higher than those in the other three seasons (8 %-10 %). Concentrations of isoprene (0.2-5.3 x 10(7) cm(-3)) and monoterpene (1.1-8.4 x 10(6) cm(-3)) OOMs in Beijing were lower than those reported at other sites, and they possessed lower oxygen and higher nitrogen contents due to high NO, levels (9.5-38.3 ppbv - parts per billion by volume) in Beijing. With regard to the nitrogen content of the two anthropogenic OOMs, aromatic OOMs were mainly composed of CHO and CHON species, while aliphatic OOMs were dominated by CHON and CHON2 ones. Such prominent differences suggest varying formation pathways between these two OOMs. By combining the measurements and an aerosol dynamic model, we estimated that the SOA growth rate through OOM condensation could reach 0.64, 0.61, 0.41, and 0.30 mu g m(-3) h(-1) in autumn, summer, spring, and winter, respectively. Despite the similar concentrations of aromatic and aliphatic OOMs, the former had lower volatilities and, therefore, showed higher contributions (46 %-62 %) to SOA than the latter (14 %-32 %). By contrast, monoterpene OOMs and isoprene OOMs, limited by low abundances or high volatilities, had low contributions of 8 %-12 % and 3 %-5 %, respectively. Overall, our results improve the understanding of the concentration, chemical composition, seasonal variation, and potential atmospheric impacts of OOMs, which can help formulate refined restriction policy specific to SOA control in urban areas.Peer reviewe

    The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing

    Get PDF
    During the COVID-19 lockdown, the dramatic reduction of anthropogenic emissions provided a unique opportunity to investigate the effects of reduced anthropogenic activity and primary emissions on atmospheric chemical processes and the consequent formation of secondary pollutants. Here, we utilize comprehensive observations to examine the response of atmospheric new particle formation (NPF) to the changes in the atmospheric chemical cocktail. We find that the main clustering process was unaffected by the drastically reduced traffic emissions, and the formation rate of 1.5 nm particles remained unaltered. However, particle survival probability was enhanced due to an increased particle growth rate (GR) during the lockdown period, explaining the enhanced NPF activity in earlier studies. For GR at 1.5-3 nm, sulfuric acid (SA) was the main contributor at high temperatures, whilst there were unaccounted contributing vapors at low temperatures. For GR at 3-7 and 7-15 nm, oxygenated organic molecules (OOMs) played a major role. Surprisingly, OOM composition and volatility were insensitive to the large change of atmospheric NOx concentration; instead the associated high particle growth rates and high OOM concentration during the lockdown period were mostly caused by the enhanced atmospheric oxidative capacity. Overall, our findings suggest a limited role of traffic emissions in NPF.Peer reviewe

    Modelling Method and Application of Anti-Corrosion Pill Particles in Oil and Gas Field Wellbore Casing Annulus Based on the Discrete Element Method

    No full text
    This study uses a self-developed anti-corrosion pill particle as the research object and develops the pill particle population modelling method in order to optimize the anti-corrosion process of oil and gas wellbore casing annuli. The shape of the pill particle is similar to a cylinder, according to the test and analysis of geometrical characteristics, and can be simplified into three types based on height, namely pill particles A (5.4 mm), B (5.8 mm), and C (6.2 mm). The multi-sphere approach is then used to create models of three different types of pill particles with varying degrees of precision. The feasibility and effectiveness of the modelling method for pill particle populations are proven by comparing the simulation results of the bulk density test and the angle of repose test. The results show that the 12-sphere models of pill particles A, B, and C are accurate representations of genuine pill particle morphologies and are adequate for simulating particle mechanics and flow processes. The applicability and practical use of the modelling method are then demonstrated using an example of a self-designed pill particle discharging mechanism. The results show that the modelling method can accurately simulate the pill discharging process and provide an accurate simulation model and theoretical basis for the optimization of the structural parameters, dimension parameters, and operating parameters of the discharging device

    Iodine/Visible Light Photocatalysis for Activation of Alkynes for Electrophilic Cyclization Reactions

    No full text
    Photocatalytic organic synthesis needs photocatalysts to initiate the reactions and to control the reaction paths. Available photocatalytic systems rely on electron transfer or energy transfer between the photoexcited catalysts and the substrates. We explore a concept based on the photopromoted catalyst coupling to the substrate and the phototriggered catalyst regeneration by elimination from the catalytic cycle. A catalytic amount of elementary I<sub>2</sub> is applied as both a visible light photocatalyst and a π Lewis acid, enabling the direct activation of alkyne CC bonds for electrophilic cyclization reactions, one of the most important reactions of alkynes. Visible light is crucial for both the iodocyclization of the propargyl amide and the deiodination of the intermediate. Singlet oxygen is found to play a key role in the regeneration of I<sub>2</sub>. This system shows good functional group compatibility for the generation of substituted oxazole aldehydes and indole aldehydes. Hence, this study provides a readily accessible alternative catalytic system for the construction of heterocycle aldehyde derivatives by sunlight photocatalysis

    Influence of the amount of hydrogen fluoride on the formation of (001)-faceted titanium dioxide nanosheets and their photocatalytic hydrogen generation performance

    No full text
    The influence of the amount of hydrogen fluoride (HF) on product formation from the hydrothermal reaction of titanium butoxide and concentrated HF is investigated. Low HF contents lead to a preference for the formation of small TiO2 nanoparticles, medium HF contents lead to a preference for TiO2 nanosheets, and high HF contents lead to a preference for large TiOF2 particles. Meanwhile, TiO2 nanosheets display higher activity in photocatalytic hydrogen generation than that of smaller TiO 2 nanoparticles; this demonstrates the higher photocatalytic activity of (001) facets over others. The synergistic effect between TiO2 nanosheets and TiOF2 particles could improve the performance of TiO2 nanosheets owing to possible charge separation over their interface, although TiOF2 particles themselves barely show any activity

    Study on the Discharge Process and Mechanism of Anti-Corrosion Pill Particles in the Oil and Gas Field Wellbore Casing Annulus Based on the Discrete Element Method

    No full text
    This research studies the discharge process and its mechanism using the discrete element method (DEM) with self-developed annular corrosion pill particles and the discharge device as an example in order to optimize the oil and gas field wellbore casing annular corrosion process. The object of study was chosen from four different grid numbers and four different grid widths, and EDEM software was utilized to simulate and assess the pill particle discharge process based on preliminary experimental research. Under five different pill wheel rotation speeds, the effects of the grid number and grid width on the filling amount, filling density, discharge variation coefficient, and compressive force of pill particles were investigated from macroscopic and microscopic viewpoints. The findings reveal that the grid number, grid width, and rotation speed all have a significant impact on pill filling and discharge performance. As a result, the discharge wheel&rsquo;s structure and operating characteristics were optimized. The discharge wheel performs best when the grid number is 8, the grid width is 75 mm, and the rotation speed is 15 rpm; the pill filling density is 692.26 kg/m3, the discharge variation coefficient is 0.022, and the maximum compressive force is 188 N. This study establishes the groundwork for enhancing wellbore integrity management in oil and gas fields by providing a reference for the optimal design of wellbore casing annular corrosion prevention devices in oil and gas fields
    corecore